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FORCED PERIODIC MOTIONS OF A QUASIPERIODIC SYSTEM WITH A LAG

L.D. AKULENKO

The forced periodic motions of a qusilinear oscillator are investigated
using Poincare's method and the method of successive approximations /1/.

It is assumed that the perturbing function contains variables with
deflecting arguments. Sufficient conditions of asymptotic stability are
obtained by the exponential law of derived periodic motions, using
Lyapunov's first method /1/ and by applying the Floguet-Lyapunov theory

of the differential eguations with periodic coefficients /2, 3/. Specific
examples of perturbations, in particular, the analogue of Duffing's
equation are considered. These investigations may be useful when consider-
ing problems of the control of oscillatory and rotating systems, using
small controlling actions with an significant time lag. This lag is
usually generated by the finite velocity of transmission of various

signals in the control system, by the time taken to process measurement
data, and the inertia of actuating mechanisms /4/. In systems containing
distributed elements, the lag is due to the finite propagation velocity

of wave processes, defined by the properties of the medium /5/, etc. Small-
parameter methods were used by Krasovskii /6/, Shimanov /2, 7/, and others
(see the bibliography in /3, 5/) to investigate oscillating systems with

a time lag.

1. Statement of the problem. we consider the quasilinear system
2+ ek =G() +eg (32, 2% %) It]<<oo (1.1)

where z is a scalar variable z =2z (f), 2y = z (t — 1), the dots denote derivatives with respect to
time !, ® are parameters of the frequency of unperturbed oscillations (the case when o =0

is also considered), T is the deviation of the argument, |T|<Coo, and e is a small parameter

e & [0, o). The functions G and g are assumed to be piecewise smooth with respect to t, Ty-periodic
(Ty = 2n/¢, v>0), and may admit in the interval t & lt,, t, + Tyl a finite number of points of
discontinuity of the first kind. When & =0 the generating system is presumed to have a
solution z, that is T-periodic which can be represented by the trigonometric series

o0

= c® . N .
= Y g™ GO~ Y (Ve (1.2)

k==—o0 =—c0

When deriving a particular solution of (1.2), it is required that wstkhv or G® =0
when © = kv. We reduce (l.l) by the substitution 2z = 2z, + 2z to the form

"t om=ef(t, 2,2, 2, %), |11 (1.3)

The function f is known and is Ty-periodic in t. It is simply derived on the basis of
the function g and by putting 2z =2z,+ z, and is considered to be piecewise smooth in t and
fairly smooth relative to other arguments in some region of its determination. The property
of smoothness and other properties of system (1.3) are defined more exactly below.

We have the problem of deriving a perturbed periodic solution for system (1.3) with de-
flecting argument for any && [0, e)] for g, fairly small, and of investigating its stability
as {-— —oo.

The periodic solution of (1.3), whether oscillatory or rotational (whene = O)may be derived by
Poincar€'s constructive methods or by using successive approximations /1, 8/. Note that the
lag or lead of the arguments are not distinguished in the derivation of T-periocdic solutions.
The initial function is not specified, but is determined when solving the boundary value
problem. The solution system (1.3) is derived in some interval of time t& i, t, + Tl and
continued in a periodically smooth manner for all ¢ >t, + T and t<C!,. The stability of
periodic motions is investigated in the case of a lagging argument: (& lt, ), T>0 or t&
(—o0, to), T<<O0; the motions of a system with leading argument are unstable.

The so-called simple cases such as, when the number of critical characteristic exponents
and their respective periodic solutions are the same (/1=3, /5=7/etc.), are usually considered
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in investigations of stability. This ocqurs in both the rescnance and non-resonance cases in
system (1.3) when @ > 0 @ =0 belongs to a special critical case.

Below, we consider the forced periodic motions of system (1.3} in the followlng cases:
non-resonance oscillations {w=={n/m)v, where n, m are prime integers, resonance oscilla=-
tions {@ = {n/m}v), and special oscillations or rotations {(w = 0}

2. Ogcillations in the non-resonant case. Derivation of the solution. The T~
periodic¢ gcolution =z =z (f, &) is derived in the form & = ey, where the unknown function y is
determined from the equation (& > 0)

¥y -+ ofy =F 1 ey, &Y, ey, e} (2.1

If the function f is analytic with respectto &, x', Z¢, Ty in a small neighbourhood of the
point & =% = z; = 2, = {), the solution y =y { & is derived by expansions in powers of the
small parameter e

L fgike
Y=ot eyt .. n  Yplll= W, m» p=014,... (2.2)

R=—

where f,® are the coefficients of the Fourier functions f,{f) determined successively, for
example,

f‘) (t)=f(ta OJ 0,0,0) (2.3)
fr (&) = (FVa oo 4 (eDo Yo' =+ (fay o Yor + (fx, Yo yo-c.

Expansions (2.2) and (2.3) do not have singularities, since we knaw a fortiori that e = kv
When & >0 is fairly small, they converge to the unique T\-periodic solution of (2.1) estab-
lished by the method of majorizing series.

If the function f is non-analytic in z, 7', z«, &, the sclution derived by the method of
successive approximations using the recurrent scheme {(p =0, 1, ..., yu = Vo)

2S) g vt
i(}\) eLkV . R
Yy (& 8) = Z W oen ) =1 ¥y SYion B EYiprd) (2.4

——c

The successive approximations (2.4) uniformly converge to the unique TFy-periodic solution
of {2.1) with fairly small e&>>0, if the function f satisfies the Lipschitz condition in z, z,
Zy, T, with constants independent of ¢ in a small neighbcourhood of the zero solution genera-
tion. This is established by Schauder's principle and the theory of the Banach compression
operator /9/. Rigorous confirmation by perturbationmethods are formulated and proved as in
/6, 7/. The estimates of the radius of convergence of series (2.2) in &, |e| < g or the
successive approximations {2.4) are obtained by conventional methods /1, 7/.

Investigation of stability. The analysis of the stability of the derived periodic solu-
tion {for respective definitions see /3, 5/} is based on the calculation of the critical
characteristic exponents of the linear equaiton with periodic coefficients in variations /2/

£ 4 0 s (fE ol fede + ferfd) (2.5)

where § is the variation of solution, and the derivatives of the function f are taken on the
derived periodic solution x = sy{f, &). The case considered here is a critical one: when & = 0.
Eg.{2.5) has a pair of purely imaginary roots Ay, = -+le.

as shown in /3/, it can be readily established using simple examples of {2.5) that when
jel>0, as f— +oo for T<<0 or as f-—» —oo for T >0 (the cases of a leading argument),
the motion is highly unstable. The cases of a lagging argument t>»0, t— +oo or T<<0, {->
—oo require additional investigation involving the calculation of two critical character-
istic exponents A, taking & into account. To substantiate the method used, results similar
to those of Floguet's theory are used here /2/, namely, for differential equations that are
linear, homogeneocus, and Ty-periodic with a Lagging argument {(to be specific, we subseguently
assume {3»0, v > 0) each solution can be approximated with any degree of accuracy on a scale
of exponential functions by a linear combination of solutions of the form ety (f), k=0,1,.. .,
k., where w(t 4+ T,)=u{f). The constants A, have the meaning of characteristic exponents.

According to this proposition the solution of the variational sguation (2.5) is derived
in the form of the expansions

E=ettu, u(t+Ty=u(l), &=\, (2.6}
ho=Ag + oedy + 8l L, uo=oug bosuy et

Substituting (2.6) into {2.35) and equating coefficients of like powers of g, we obtain
the required expressions for Ag, o, Ay, #y, ... , @nd in particular X, == 4-ie, Uy = o A el
It follows from the condition of Ty-pericdicity of ugthat ¢ = 0. From the condition of 7T\~
periodicity of u, we determine A,
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Ty
b= e § [ o Udo - 5 (e € - e do e 2.7)

For the real part p, and the imaginary part p,, respectively, of the exponent A4, (2.7)
we obtain simple explicit expressions, which may be calculated using the functions z, (ze=0)

Ty
p1= 'z_;— g [(f;.)o — —30— (oo Sin @T + (fz.-)o cOS (m:] dt (2.8)
A
Ty

= g § [ (o -+ = (e cos@r + (fo Yo sinwr ] dt

[
Hence the following statement holds.

Statement 1. The Ty-periodic solution =z (t, &) of a system with lagging argument (1.3)
is asymptotically stable when &>0 1is fairly small, if p;<<0, and unstable when p, > 0.

The case of p; =0 requires additional investigation taking higher powers of & into
account; it can be carried out by expansions in series or by successive approximations of the
exponent A /2/ in &. -Note that when 7T =0 (a system without lag), or when the averages of
(fx Yo (f=)a are zero, Egs.{2.8) is identical with those for systems without delay /1/. It
follows from (2.8) that the case of "positional" perturbations f = ¢ (¢) + kz; leads to asymp-
totically stable oscillations, when ksin ot >0, for example k>0, 0 <<t < n/@w. Conversely,
even when there is linear dissociation ((f)o=56<0), the stability of motion may, accord-
ing to (2.8), be disrupted by the terms dependent on the lag.

3. Investigation of resonance oscillations. Derivation of the solution. System
(1.3) is considered in the resonance case in which ® = (n/m)v, where n,m are prime integers,
and T is the periodic solution of period T = m7T, derived by expansion in series in powers
of the parameter &, or by successive approximations in the form (see /2—3, 5~7/)

z(t, €) =zy+ ey (L, &), x5 = usin ot + b cos wt (3.1

where a and b are constants to be determined, and y is an unknown T-periodic function which
satisfies the equation

¥ 0%y =1 (& Zo, To', Tor, Zox) + E[(F oy + (Fe Yoy + (Fego ¥z + (adoyr 1+ 2R (8, 4, V' Yra 4o ©) (3.2)

It is assumed that the function R satisfies the Lipschitz condition on y,y’, ¥y, yr with
constant independent of t in the small neighbourhood of the generating solution. Neglecting
terms O (¢) in (3.2) we obtain the expansion

t
y0=-(1TSfo(s, a,b)sin o (t — s)ds + apsinwt 4 Py cosw?, Yo =dy,/dt (3.3)
0

where f, is a known function, T periodic in t, of the parameters a and b. The required
function y, will be T-periodic, if

Pa, b)=yo(T) — 4 (0)=0, Qa, )=y (T) —y (0) =0 (3.4)

Relations (3.4) are considered as equations in the unknowns ¢ and b. Let us assume that
system (3.4) has a real root a*, b*. Then function z, (3.l) is completely defined, and y, in
(3.3) is correct except for parameters a,, flo. These parameters are determined by the condi-
tions of periodicity of the following approximations Y, which reduce to the form of the system

Poacg + P,btﬁo=—y1°(T), Q;'ao-i- Q'b'ﬁo='—y1’ (T) (3.5)
t

o 1 ’ o ’ o ’ o 4 .
) =— S (7)o yo™+ (F="Yo ¥o™ + (Fxdo Yor© + (fxdo Yo ] X sino(t —s)ds
[}
Here y,° (f) is the function yein (3.3), when ap=f¢=0. If a* b* is a simple root
of system (3.4), i.e.

A =|5E9

—W #*0 (3.6)

a*, b*

and this is assumed, then the linear system (3.5) is uniquely solvable for , B¢, and by the
same token the function y,(f) is completely defined. Subsequent approximations Yy are deter-
mined by the recurrent scheme (I =1,2,...)

Yesn = Yo (t) + o4y sin ot + Py cosot + sy:;) t ap By e) (3.7)



462

t

v = - S [(Fdoyay + F="Vo Yoy + (o Yray + {Fxy)o Yoy + R (S, ¥y Yty Yoays Yo 8)] Sin 0 {E ~ 5) ds
) ,

and for !l =1 we assume R = (. The parameters ai f;, as functions of £ and of other specified
parameters of the system, are obtained at each step by solving the quasilinear system of
equations ] ,

Powoyy + Pyaby = — y*(T) + ep (T, p By, ) {3.8)

Qasy + Quepy = — y2° (T) +ep (T, 0, By, 8)

w

t

Pt oy, Bre)=— L S (=)o ¥l-n + (=)o ¥i-n) +
[
Y

(Fedo Yra=n + (Fa Yo Yatin + B (5, Yty Yy Yxar Yy )} Sino (¢ — 5) ds

Since the functions p;, p;’ satisfy the Lipschitz conditions on @, f; in a small neigh-
bourhood of a,, Py, System (3.8) has a unique root a;(e), B; () which when & =0 becomes a f.
As a result, we have a recurrent scheme for successive approximations (3.7), (3.8). Using
the general theorems in /9/ and the investigations in /6, 7 and 3, 5/, we can establish that
the limit as [— oo is the unique T-periodic solution of system (3.2) y (¢ e), and in conform-
ity with the change (3.1), the function z (¢, &} is the required (n/m)-resonance solution of
system (1.3). A power convergence of approximations & = zo + &y to the required T-periodic
solution z* (f, &) then occurs. When the function f is analytic, the solution is derived by
expansions similar to (2.2)

Conditions of stability. The asymptotic stability is investigated using the variational
equation as in Sect.2 of /2/. The non-trivial solution and the critical characteristic ex-
ponents are sought in the form

h=¢eh+e .., u=u +eu+e.., ut+T)=ul()

For u, we obtain the expression u, = 4 sin ¢ + B cos wf, and the T-periodic function u, is
obtained from the equation

w” + 0y = —2huo’ + (f)o uo + (Fx.)o Uno + (fxYotto” + (f Yo Uxo
The conditions of periodicity of u; reduce to the relations
0P’ A + (0P’ — A)B =0 (3.9)
(Qar' —A)A + Q' B =0, A= MTo

It follows from (3.9) that the determinant of the system must vanish for the required
values of A, i.e.
A2 — A8 () — 0A (t) =0, 8 = Qo' + 0Py’ (3.10)

Analysis of the roots of (3.10) provides the following necessary and sufficient conditions
for the real parts of both roots A,, to be negative

A()<0, () <0 (3.11)

The determinant A (1) is calculated from (3.6) and is non-zero; the quantity & (t) is
similar to p, in (2.8) and is

T
b(r)= S [0 (f+-Yo— (f=)o 8in 0T + 0 (fz_)o cos 0T] dt (3.12)
o

Statement 2. Conditions (3.11) are sufficient for the asymptotic stability of the (n/m)-
resonance solution of system (1.3) when & > 0 is fairly small. If at least one inverse
inequality holds, the solution is unstable.

The critical case of A (1) =0 is excluded by condition (3.6). When A = 0 additional
investiations are required of the conditions of existence of T-periodic solutions, which are
generally associated with the expansion in fractional powers of the parameter g. However,
when the quantity &8(t) =0 is defined from (3.12), the stability is established taking into
acocunt the higher powers of & in the calculation of the critical characteristic exponents

/1, 2/.

4. The special case (@ =0). System (1.3) may have, when « = 0,. solutions that
define either oscillatory or rotational motions. In the case of rotations, the function § is,
in addition, required to be 2a-periodic in =z, zg. Such motions can occur in periodic force
fields subjected to high-frequency perturbations /1, 10/.

In fact, suppose we consider an oscillatory or rotational system with one degree of free-
dom of the general form /8, 10/
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q" = 0 (Qs, g, ¢, Gas Go')

where ¢ == ¢ (s) is the generalized coordinate, the prime dindicates a derivative with respect to
the argument s, g = g {s — 0), and ¢ is the argument lag. The following relation is assumed-<to

be valid: Q2Q (¢, 7, O, 2o, Q27) = of (8, 7, &'y Ty, T)

where & is the small parameter, ¢ = Qs is the new argument, z (f) =g (s) is the generalized
coordinate, and T = Qo is the lag of argument t. Then in the new variables t and z the
system considered here takes the form (1.3), where o = 0.

Quasisteady oscillations. The solution is derived in the form (3.1), where o = g, i.e.
zs = b = const, and the Ty-periodic function y is defined by (3.2). The sufficient conditions
of the existence and uniqueness of the periodic solution, when € >0 is fairly small reduce
to the requirement of the solvability of the equation for unknown & and of simplicity of root

b*, i.e.
Q0,b)==Qy(b) =0, @ (¥ 0 (4.1

The successive approximations are derived is the same way as in Sect.3 with w =0. In
particular

t . Ty
Yo=Po + a*t4 S (t—s)fo* ds, ao*=~%g (Ty—s)fo* ds (4.2)
0 [44

The constant f, is determined by the condition of periodicity of y, which has the form
of the second eguation of (3.5) as @ — (0. The proof of the method of successive approximations
is similar to that in /8/. Thus the unknown T periodic motion =z (f, e} is close to the
stationary point <z = b* -+ gy.

Rotational motions. The perturbed solution that corresponds to combination resonance
n/m is derived in the form /8, 10/

z=(n/m)vt+b+ey y¢t+D=y@), T=ml, (4.3)

The conditions of existence and uniqueness of the T-periodic solution of (3.2) when (v = 0)
have the form (4.1). Further calculations are similar to those presented in Sect.3. The
questions of proof are investigated using /1, 7—9/ as the basis. Additional investigations
are required when @ (#*)==0 or @Q,==0; they are similar to those carried out for systems
without a deviating argument /1, 8, 10/.

Investigation of stability. As noted in Sect.l, the critical case considered here belongs
to a special one: one group of periodic solutions corresponds to a double zero characteristic
exponent when &=0 /1/. Using reasoning similar to that applied to conventional systems,
and the results in /2/, we can establish that these two exponents are of order lfa By expand-
ing the characteristic exponents and using the solutions of the variational equation (2.5) of
the form

A= Veh + ehy -+ O (&), u = uy + Veu + euy + ey + 0 (%) (4.4)
we obtain from the T-periodicity of the functions ug, Wy, Uy, Uy expressions for the unknown co-

efficients Ay, A,
M= T7Qy (b%) (4.5)
7

Ao § 1000 — (Fedow + (Fe o] dt

o

Statement 3. It follows from (4.4) and (4.5) that the periodic (quasisteady or rotational)
motion of a system with a lag (1.3), when o =0, is asymptotically stable exponentially for
fairly small e >0, if @, (*)<<0 (the necessary condition), M <C0, and unstable otherwise.

The equation @ (b*) == (0 is excluded by condition {4.1). If A, = 0, additional investiga-
tion, related to the more precise determination of A from the conditions of periodicity of
the coefficients uy, U; ...y is required. This leads to an increase in the reguirement for
the smoothness of the function f.

5. Examples. We shall consider specific expressions for the perturbing function f in
(1.3) and investigate the conditions of existence, unigueness and stability of periodic motion
in the resonance case.

A linear system. Let
F=6+ gz + hr + xz, o+ um (5.1)

where @, gh, y, % are TI,-periodic functions of t. The conditions of existence and uniqueness of
T-periodic¢ solutions consists of the non-degeneracy of the defining linear equation relative
to the unknown parameters g,b (8 = ow1) (see (3.1) and (3.4)).
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Qs = [—fes — Whee — Y5 €08 O = Yse SR O — © (% cos O = LR
Ygs SID BV 2 -+ [—gpe =+ WAy — F5c 088 — 8RB — ©(r,cond —
Xy Sin D] &

Pe = [Bes + @hep = Yos COS B — Yo Sin 8 = @ {yoc cos 8 —
s sin )} a + [gee = Whes T Hee €08 B = Yo 5in 6 —
@ (e €08 6 — e sin 0)

where coefficients of type @, @, fis, £500 fec and others are obtained by integration in the interval
te [0, 7] of the functions from (5.1) ¢, ¢(y and others, multiplied by sink ot cos! wt; the
powers k, !=0,1,2 are determined by the subscripts.

If the determinant of matrix of the linear system (5.2) is A (1)< 0, the T-periodic solu-
tion is asymptotically stable, when §(1) <0, 1i.e.

T8 (1) = why — %o sin O 4 wx, cos 8 < 0 5.3
where &y, %o % are the mean values of the functions &, 4, x. In particular, if in (5.1) g¢g=i=
% =0, the sufficient conditions of existence, uniqueness, and asymptotic stability of the n-
resonance solution have the form

A(T) = gy — Agghoe <0 TH(T) = — 08’08 Y (5.3}

In ancother special case, when ¢=4=0 and ¢, x == const, these conditions have the form

@A {(7) = — (3 cos 0 4 wx sin 8)* — (% sin B «— wx cos B)2 < 0 (5.5
Ty (1) = —y sin 6+ axcos6 <0

Note that when yx*<+%*>0 in formula (5.5), the strict inequality is satisfied by A for
all t. The expression for A,6. in (5.3)—(5.5) are represented as functions of the para-
meter t to allow for a comparison with respective systems without a lagging argument.

The equation of the Duffing type, Let
f=fosinvt dz® + kz {fo, v, d, k = const} (5.6)

Let us investigate the conditions of existence, uniqueness, and stability of the basic
resonance solution w=+ of system (l.3), (5.6). Equations of the type (3.4) that determine
the constants a and b contain five parameters and have the form of cubic equations (r*= a2+ b3

fo + ¥4dar® + k (a cos wt -+ b sin @t) = O 5.7}
3/,dbr? - k {—a sin o1 4 b cos wt) = 0

When 1= 0, system {5.7) is identical with the thoroughly investigated system that defines
the Duffing equation /1/. By a simple transformation, system (5.7) can be reduced to a cubic
equation in r* which contains conly twe dimensionless parameters and is representable in the
following form, convenient for graphical investigation:

A={(yA +cos8P +sin? B =D (4,7, 0) {5.8)
A=Kt 2 0, y o= ¥ dkm%2, 8= et

Analysis of the set of intersection points of the ray 4 >0 with the two-parameter sets
of curves ® shows that for [y|< o and ©e (0, nl(mod 1} there are one or three roots 4, < 4,4,
and the roots 4, and 4, may be the same for some values of ,8. For example, this is true for
cos B = 41, vy = F4,., when 4, =A,= "%, When cos@=1,0>y> —%y or cos@ = —1, 0 y<¥y, (3.8) has
three different roots: 4,< 4,< A, Generally the property of coincidence of the roots d4;= 4,
is determined by the relation (5.8) and the condition @, =1 which lead to a guadratic equa-
tion in := yd4 +cos¥. The discriminant of this eguation is D = 4(1 — 4sin? ), hence multiple
roots may occur for values of § that satisfy the ineqguality sin?8<Y,. The respective values
of y and 4,;, =4 are

1 1 2 1 1 -1
?—:—,ﬁ[(cosﬂ—f?l)”’) +95in’8J(«2cosQi—2—DV’) (5.9)
1 A2 1 2 -1
A-:-Q(V'—Zcosﬂ;t“:&—[)"‘) [(co:;ﬂj:"g‘pl/') +9sin26}

To derive the set of roots d4;(y,® it is convenient to solve the quadratic eguation (5.8)

for y,lvi<ee .
v= —weosO - wlw —sin? ), w=41>0 {5.109

It follows from (5.10) that for any 6 a solution w exists, and w> sin?8. The boundary T
of the set of admissable values of w for given 08 is determined in the plane of the parameters
(v, w) by the equation w= sin*® and (5.10). As a result we have

Fr=TJFw{l—uw 0wt (5.41)

The set of curves vy(w, 8;),0<8 < a/2 for 8, =0,06, = arccos 0.95, 8, = n/ 6, 8, = arccos ¥y, 8; = arccos
04,8 =mn/2 and curve [ (w) are shown in Fig.l in conformity with (5.10) and (5.11). Curves
for 6 e (n/2 n] are obtained by reflection from the abscissa axis which completes the construc-
tion of the set of curves required. MNote that the behaviour of curves vy(w,8) for large
w, w31 (for small 4,0« 4 <€1), according to (5.10), is determined by the approximate formula
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y=~ —wcosf 42>, An important gqualitative property of the set of curves y(w,0) is that at points

ye T their tangents are vertical, i.e. the derivatives éy/ow are infinite. The multiplicity
of the roots 4; indicated above is related to the behaviocur of the curves v {» 8 when sin?8 <Y,
The limit multiple value of w corresponding to sin?8 =1  is equal to w=1%Y; {curve 3 in Fig.l}.

The functions v{z, 8 provide the sclution of the problem
7

0.5 of the existence, unigueness of the basic resonance motion
' e — 6 of system (1.3), (5.6) and enable one to derive it, without further
/x"’ \\ 5 4 calculations with an exrror of 0(e) for re{0,0), if w? is a simple
// \ 3 root. When w* is known, the guantity - = f?(w*s¥"l, and the
» unknown parameters a« and b are uniguely determined from the
¢ 0.5 10 w linear system{5.7}. It will be readily seen that conditions
N / P=0Q=04{1=0 and the multiplicity of the roots w* i.e.
~ s @=4,®, =14 =0 are equivalent and satisfied only when
";,’ sin? 8 < Y,
0.5 P The determination of stability consists of checking the
Xi \4\ x 6\ conditions
A w3 {y, 8) + dywy* {y, B cos 0 392 > 0, ksin8>0 {5.12)
Fig.1l

Unlike the motions of a classical Duffing oscillator (8=0} /1/, we have in system {1.3)
(5.6) asymptotically stable resonance oscillations also when the second of inequalities (5.12)
is satisfied. It should be noted that for the roots w* (y, 8) of both branches of curves vy (w,6)
(5.10) the verification that the first of conditions of (5.12) is satisfied reduces to
checking the following inequality:

3w T 2 (wy* — sin? 8) cos 8 — 250 8 >0
This and the set of curves represented in Fig.l shows that motions which correspond to
roots 4y and 4; for y<9® or A2 for >0 are asymptotically stable, when 8 is small if x> 0.
The stability of fundamental resonance oscillations when 6 e(n/2, n] is analysed similarly; the
case when e n, 2n] is the same as that considered here.

The author thanks S.A. Mikhailov for assistance in carrying out the calculations.
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