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FORCED PERIODIC MOTIONS OF A QUASIPERIODIC SYSTEM WITH A LAG* 

L.D. AKULENKO 

The forced periodic motions of a qusilinear oscillator are investigated 
using Poincarg's method and the method of successive approximations /l/. 
It is assumed that the perturbing function contains variables with 
deflecting arguments. Sufficient conditions of asymptotic stability are 
obtained by the exponential law of derived periodic motions, using 
Lyapunov's first method /l/ and by applying the Floquet-Lyapunov theory 
of the differential equations with periodic coefficients /2, 3/. Specific 
examples of perturbations, in particular, the analogue of Duffing's 
equation are considered. These investigations may be useful when consider- 
ing problems of the control of oscillatory and rotating systems, using 
small controlling actions with an significant time lag. This lag is 
usually generated by the finite velocity of transmission of various 
signals in the control system, by the time taken to process measurement 
data, and the inertia of actuating mechanisms /4/. In systems containing 
distributed elements, the lag is due to the finite propagation velocity 
of wave processes, defined by the properties of the medium /5/, etc. Small- 
parameter methods were used by Krasovskii /6/, Shimanov /2, 7/, and others 
(see the bibliography in /3, 5/J to investigate oscillating systems with 
a time lag. 

1. Statement of the problem. We consider the quasilinear system 

z" + o% = G (t) + eg (t, z, z', zI, k'), 1 t 1 < 00 (1.1) 

where z is a scalar variable z = z(t), z, = z(t--), the dots denote derivatives with respect to 
time t, o are parameters of the frequency of unperturbed oscillations (the case when o=o 
is also considered), T is the deviation of the argument, IT I< 00, and e is a small parameter 
EE IO, ~~1. The functions G and g are assumed to be piecewise smoothwithrespectto t, Tvperiodic 
(TV = 2dc, v > 0), and may admit in the interval tE Ito, to + T,l a finite number of points of 
discontinuity of the first kind. When E = 0 the generating system is presumed to have a 
solution z,that is T-periodic which can be represented by the trigonometric series 

s 
c(k) 

- &kti, 
(p - k’+ G (t) - G’k’&kvi (1.2) 

k-co 

When deriving a particular solution of (1.2), it is required that o# kv or G(k) = 0 
when o = h. We reduce (1.1) by the substitution z = z0 + z to the form 

I" + 04 = ef (1, 5, z’, 27, q’), I t I < 00 

The function f is known and is T,-periodic in t. It is simply derived on the 
the function g and by putting z = z,, j-s, and is considered to be piecewise smooth 
fairly smooth relative to other arguments in some region of its determination. The 
of smoothness and other properties'of system (1.3) are defined more exactly below. 

We have the problem of deriving a perturbed periodic solution for system (1.3) 

(1.3) 

basis of 
in t and 
property 

with de- 
flecting argument for any Ee 10,&J for EEfairly small, and of investigating its stability 
as t++m. 

TheperiodicSolutiOnOf (1.3),whetheroscillatoryorrotational (wheno = 0)maybe derivedby 
Poincare's constructive methods or by using successive approximations /l, 8/. Note that the 
lag or lead of the arguments are not distinguished in the derivation of T-periodic solutions. 
The initial function is not specified, but is determined when solving the boundary value 
problem. The solution system (1.3) is derived in some interval of time tE it,,&, + Tl and 
continued in a periodically smooth manner for all t>,t, f T and t<t,. The stability of 
periodic motions is investigated in the case of a lagging argument: t E Ito, DO), ‘c > 0 or t E 
(--00, tJ, 7 < 0; the motions of a system with leading argument are unstable. 

The so-called simple cases such as, when the number of critical characteristic exponents 
and their respective periodic solutions are the same (/l-3, /5-7/ etc.), are usually considered 
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in investigations of stability. This QCCUES in both the resonance and non-resonance zases I:: 
system (1.3) when o> 0: o =O belongs to a special critical case, 

aelaw, we consider the forced periodic motions of system (1.3) in the following cases: 
n*n-resonance oscillations fo # (=M \‘t where m, m are prime integers, resonance osciila- 
tions (o = (n~'m)v), and specialosciilations or rotations (o = 0). 

2. @scillations in the non-resonant case. Derivation 05 the solution. The T,- 
periodic solution 3: = s(t, E) is derived in the form x = my, where the unknown function y is 
determined from the equation (E> 0) 

y” t w% = i P, ey, eI/‘, q#T, Fk’l i2.1) 

12 the function f is analytic with respectto z&z*, x%, x,'in 3 small neighbourhood of the 
point 2 =t 2' = & = rt;' z #, the solution y = Y&B) is derived by expansions in powers of the 
small parameter s 

(2.2) 

where f,W are the coefficients of the Fourier functions j,(Z) determined successively, for 
example, 

fo (t) = f (t9 0, 0, 0% 0) (2.31 

fl (t) = (jx')o YO "t"" (fl.')O YO. "+ U,JO YO? + (jd; )a Y,,' 

Expansions (2.2) and (2.3) do not have singularities, since we know a fortiori that w+kv. 
when s>O is fairly small, they converge to the unique TV-periodic solution of (2.lf estab- 
lished by the method of majurizing series. 

If the function j is non-analytic in 5, x',z*, x7', the solution derived by the method of 
successive approximations using the recurrent schema (p = 0,1,...,y,,, z y,,) 

The successive approximations (2.4) uniformly converge to the unique T,-periwdic solution 
of (2.1) with fairly small e>O, if the function f satisfies the Lipschitz condition in t, z', 

%Er, r, - with constants independent of t in a small neighbourhood of the zero solution genera- 
tion. This is established by Schauder"s principle and the theory of the Banach compression 
operator /9/. Rigorous confirmation by perturbationmethods are formulated and proved as in 

/6, 7/. The estimates of the radius of convergence of series (2.2) in e, 1 e I.< EO or the 
successive approximations (2.41 are obtained by conventionaL methods /L, 7/. 

rnvestigation of stabilitg. The analysis of the stability of the derived periodic soLa- 
tion (for respective definitions see 13, Sj; is based on the calculation of the critical 
characteristic exponents of the linear equaiton with periodic coefficients in variations 12: 

5" + w"5 = c (fx’5 f fl.s- -J- f& -I- fi,&‘, (2.5) 

where s is the variation of solution, and the derivatives of the function f are taken on the 
derived periodic solution z = sy(t,e). The case considered here is a critical one: when E = 0, 
Eq.t2.51 has a pair of purely imaginasy roots &,=&ii& 

As shown in /31, it cm be readily established using simpl e examples of (2.5) that when 

t E i > 0, S.3 t++w for z<O or as t-t -OS for z>O (the cases of a leading argument), 
the motion is highly unstable. The cases of a lagging argument z> 0, t- fm ox T<O, t-+ 

--m require additional investigation involving the calculation of two critical character- 
istic exponents h,,, taking a into account. To substantiate the method used, results similar 
to those of Floquet's theory are used here /2/, namely, for differential equations that are 
linear, homogeneous, and TV-periodic with a Lagging argument <to be specific, we subsequently 
3SSUlW l>#O,a>Of each solution can be approximated with any degree of accuracy on a scale 
of exponential functions by a linear combination of sol.utions of the form I"&'u ($ k = 0, 1, . . ,I 
k,, where u (t + TV) sm u (t). The constants &have the meaning of chasaeteristic exponents. 

According to this proposition the solution of the variational equation (2.5) is derived 
in the form of the expansions 

Substituting (2.6) into (2.5) and equating coefficients of like powers of 6, we obtain 
the required expressions for LO, %I A,, +, . . . I and in particular hn = tie, uO = cl" f czoe-WJ. 
It follows from the condition of TV-periodicity of uOthat czo = 0. From the condition of TV- 
periodicity of ~rwe determine h, 
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(2.7) 

For the real part p, and the imaginary part v,, respectively, of the exponent h, (2.7) 
we obtain simple explicit expressions, which may be calculated using the functions 50 (to Cs 0) 

Pl=2T,, CL (f;.), - + (j& sin WC + (f;;), cos cot 1 dt 
0 

T, ?I9 
w= 2T, S[ & (f .‘h t +- (f& cos Of + (f;,.)O sin co,] dt 

cl 

(2.8) 

Hence the following statement holds. 

Statement 1. The TV-periodic solution z(t,s) of a system with lagging argument (1.3) 
is asymptotically stable when s>O is fairly small, if pl< 0, and unstable when pl> 0. 

The case of p1 = 0 requires additional investigation taking higher powers of E into 
account; it can be carried out by expansions in series or by successive approximations of the 
exponent h /2/ in E. .Note that when t = 0 (a system without lag), or when the averages of 
(f+'),,, (jr,)0 are zero, Eqs.(2.8) is identical with those for systems without delay /l/. It 
follows from (2.8) that the case of "positional" perturbations f = m(t)+ k;c, leads to asymp- 
totically stable oscillations, when I; sin 0-c > 0, for example k>O, O<z< nlo. Conversely, 
even when there is linear dissociation ((f,.')o = b < O), the stability of motion may, accord- 
ing to (2.8), be disrupted by the terms dependent on the lag. 

3. Investigation of resonance oscillations. Derivation of the solution. System 
(1.3) is considered in the resonance case in which 61 =(n/n)v, where n, m are prime integers, 
and T is the periodic solution of period T =mT, derived by expansion in series in powers 
of the parameter E, or by successive approximations in the form (see /Z-3, 5-7/) 

z (t, E) = 50 + ey (t, e), 10 = a sin ot + b cos ot (3.1) 

where a and b are constants to be determined, and y is an unknown T-periodic function which 
satisfies the equation 

. . 
Y + 0% = f (1, 50. G’~ =w, &) + e [(f,‘hY + (ft.‘)0 Y’ + (f&), yI + (fi;h Y,‘] -E e3R (t, y. Y’. Y,, Y,‘, E) (3.2) 

It is assumed that the function R satisfies the Lipschitz condition on y,y', yr, y,' with 
constant independent of t in the small neighbourhood of the generating solution. Neglecting 
terms C)(E) in (3.2) we obtain the expansion 

t 
yo = -& \ fo 6, a, b)sino(t-s)ds+aosinot+fJocosof, yo’= dyo/dl (3.3) 

; 

where f. is a known function, T periodic in t, of the parameters a and b. The required 
function y, willbe T-periodic, if 

ZJ (a, b) = y, (T) - y, (0) = 0, Q (a, b) s y’ (T) - y’ (0) = 0 (3.4) 

Relations (3.4) are considered as equations in the unknowns a and b. Let us assume that 
system (3.4) has a real root a*, b*. Then function z. (3.1) is completely defined, and y. in 
(3.3) is correct except for parameters a,, PO. These parameters are determined by the condi- 
tions of periodicity of the following approximations yr, which reduce to the form of thesystem 

Ph.ao + P&o=--yyl'(T), Q&a0 + Q&b = - ~1~ (T) (3.5) 
1 

YI” (t, = + 5 Kfl’)O Yo”+ (fr’)o Yo” + cr,,o Yor” + (f;+)o YoT”1 x sin 0 (t - 4 ds 
0 

Here yoo(t) is the function y,in (3.31, when a0 = PO = 0. If a*, b* is a simple root 
of system (3.4), i.e. 

and this is assumed, then the linear system (3.5) is uniquely solvable for aO, fJO, and by the 
same token the function ye(t) is completely defined. Subsequent approximations yCl, are deter- 
mined by the recurrent scheme (I = 1, 2, . . .) 

~0,~) = ~0’ (t) + al+l sin ot + PI+, cos at + &y$ (G ai1 PO e) (3.7) 
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and for I= 1 we assume RGO. The parameters al, PI, as functions of e and of other specified 
parameters of the system, are obtained at each,step by solving the quasilinear system of 
equations 

P&al+ Pb*B,=--yl"(T)+ep,(T,at, PI, a) (3.8) 

Qhq + Qb4’4 = - y~“‘tT) + EPI’ CT, al, 81,~) 

Since the functions pl,p,' satisfy the Lipschitz conditions on al, PI in a small neigh- 
bourhood of ao, PO, system (3.8) has a unique root c+(e), fil(e) which when e=O becomes a,,, PO. 
As a result, we have a recurrent scheme for successive approximations (3.71, (3.8). Using 
the general theorems in /9/ and the investigations in /6, 7 and 3, 5/, we can establish that 
the limit as Z+a, is the unique T-periodic solution of system (3.2) y(t,e), and in conform- 
ity with the change (3.1), the function z(t,e) is the required (n/m)-resonance solution of 
system (1.3). A power convergence of approximations zuJ =x0 + eyCn to the required T-periodic 
solution x*(t,e) then occurs. When the function f is analytic, the solution is derived by 
expansions similar to (2.2) 

Conditions of stability. The asymptotic stability is investigated using the variational 
equation as in Sect.2 of /2/. The non-trivial solution and the critical characteristic ex- 
ponents are sought in the form 

h = Eh, >+ E2. . ., u = u. + eu, + .sz. . ., u (t + T) 3 u (t) 
For &, we obtain the expression u0 = A sin ot + B CDS ot, and the T-periodic function Us is 

obtained from the equation 

Ul- + 02% = -21,uo'+ (f,')o ull + &,')o UT0 + (fx.')ouo' i (fX.,')O %I 

The conditions of periodicity of u1 reduce to the relations 

UP,.' A + (c&e - A) B = 0 

(Qa*’ - b)A+Qb.‘B=O, Azh,To 

(3.9) 

It follows from (3.9) that the determinant of the system must vanish for the required 
values of h,, i.e. 

A* - A6 (z) - OA (z) = 0, 6 = Qa.' + d$,* (3.10) 

Analysis of the roots of (3.10) provides the following necessary and sufficient conditions 
for therealparts of both roots A,,, to be negative 

A (7) < 0, 6 (4 < 0 (3.11) 

The determinant A(z) is calculated from (3.6) and is non-zero; the quantity 6 (r) is 
similar to p1 in (2.8) and is 

S(t)= 5 [~(f~.')~-((fl')osinot+o(f~.)ocosot]dt 
0 

(3.12) 

Statement 2. Conditions (3.11) are sufficient for the asymptotic stability of the (n/m)- 
resonance solution of system (1.3) when e> 0 is fairly small. If at least one inverse 
inequality holds, the solution is unstable. 

The critical case of A(T) = 0 is excluded by condition (3.6). When A = 0 additional 
investiations are required of the conditions of existence of T-periodic solutions, which are 
generally associated with the expansion in fractional powers of the parameter e. However, 
when the quantity s(r) = 0 is defined from (3.12), the stability is established taking into 
acocunt the higher powers of e in the calculation of the critical characteristic exponents 

/l# 2/. 

4. The special case (o=O). System (1.3) may have, when o = 0, solutions that 
define either oscillatory or rotational motions. In the case of rotations, the function f is, 
in addition, required to be Bn-periodic in I, x,. Such motions can occur in periodic force 
fields subjected to high-frequency perturbations /l, lo/. 

In fact, suppose we consider an oscillatory or rotational system with one degree of free- 
dom of the general form /8, lO/ 
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4” = Q (Qs, q, 4, qa, qo’) 
where p = q(s) is the generalized coordinate, the prime dindicates a derivative with respect to 
the argument s, q,, = qfs- a), and a is the argument lag. The following relation is assumed-to 
be valid: 

PQ (t, .r, 52x', IT, a.~,-) = sf (t, z, z', 57, r%'f 

where E is the small parameter, t = S&s is the new argument, z(t)= p(s) is the generalized 
coordinate, and z = C&J is the lag of argument t. Then in the new variables t and z the 
system considered here takes the form (1.3), where 0 = 0. 

Quasisteady oscillations. The solution is derived in the form (3.11, where o = 0, i.e. 
50 = b = const, and the TV-periodic function y is defined by (3.2). The sufficient conditions 
of the existence and uniqueness of the periodic solution,, when s>O is fairly small reduce 
to the requirementofthe solvability of the equation for unknown 6 and of simplicity of root 
b* , I.e. 

Q (0, b) = Qo (b) = 0, 00 (b*) # 0 (4.1) 

The successive approximations are derived is the same way as in Sect.3 with o = 0. In 
particular 

t I 
Yo = &I + acz*t + s (t - s) lo* ds, a@*=- -&y (TY-S)fo*~ (4.9 

0 y. 

The constant PO is determined by the condition of periodicity of y, which has the form 
of the second equation of (3.5) as o+ 0. The proof of the method of successive approximations 
is similar to that in /S/. Thus the unknown Typeriodic motion z(t,e) is close to the 
stationary point 5 = b* + sy. 

Rotational motions. The perturbed solution that corresponds to combination resonance 
nlm is derived in the form /0, lo/ 

z = (n/m)vt f b + ey, y (t + T)E y(t), T = mTV (4.3) 

The conditions of existence and uniqueness of the T-periodic sol.ution of (3.2) when(o = 0) 
have-the form (4.1). Further calculations are similar to those presented in Sect.3. The 
questions of proof are investigated using /I, 7-9/ as the basis. Additional investigations 
are required when Qo' (b*)=O or QozO; they are similar to those carried out for systems 
without a deviating argument /l, 8, lo/. 

Investigation of stability. As noted in Sect.1, the critical case considered here belongs 
to a special one: one group of periodic solutions 'corresponds to a double zero characteristic 
exponent when E = 0 /l/. Using reasoning similar to that applied to conventional systems, 
and the results in /2/, we can establish that these two exponents are of order Ifa. By expand- 
ing the characteristic exponents and using the solutions of the variational equation (2.51 of 
the form 

we obtain from the 
efficients h,, h, 

Statement 3. 
motion of a system 

It follows from (4.4) and (4.5) that the periodic (quasisteady or rotational) 
with a laq (1.3), when o = 0, is asymptotically stable exponentially for 

fairly small a>O, if Qo' (b*)<O (the necessary condition), h,<O, and unstable otherwise. 
The equation Q,,'(b*) = 0 is excluded by condition (4.1). If % = 0, additional investiga- 

tion, related to the more precise determination of h from the conditions of periodicity of 
the coefficients u,, +,...a is required. This leads to an increase in the requirement for 
the smoothness of the function f. 

h = f& + Ek, + 0 (S’/*), U = Zl,, + T/i?% -+ Erc, + E'ki, -j- 0 (E') (4.4) 

T-periodicity of the functions uO, LL], u*,ua expressions for the unknown co- 

(4.5) 

5. Examples. We shall consider specific expressions for the perturbing function f in 
(1.3) andinvestigate the conditions of existence, uniqueness and stability of periodic motion 
inthe resonance case. 

A linear system. Let 
f = cp + gz + hr‘ + x+ + W?' (5.11 

where p.8 h,X,x are T,,-periodic functions of t. The conditions of existence and uniqueness of 
T-periodic solutions consists of the non-degeneracy of the defining linear equation relative 
to the unknown parameters a, b (O=w~)(see (3.1) and (3.4)). 
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where coefficients of type 'ps,vc,gds,g sc,gcc and others axe obtained by integration in the interval 
fE (0, Tl of the functions from (5.1) q(a), g(t) and others, multiplied by sink CO~COE~ tit; the 
powers k, I= 0,1,2 are determined by the subscripts. 

If tie determinant of matrix of the linear system (5.2) is WA(T:(@. the rP-periodic soiiu- 
tion is asymptotically stable, when S(z)(O, i.e. 

T-‘6 (Tl = oh, - ‘x0 sin 8 +” WX~ tos 8 4 0 15.3) 

where ho, x07 x0 

x =_ 0.' the suf 
are the mean values of the functions h, x,x. 
ficient conditions of existence, uniqueness, 

resonance solution have the form 

In particular if in (5.1) g=h= 
and asymptotic stability of the n- 

In another special 

"(T)=~*c~-~*S~CC<OL T-%(T)=-Xos;n5<0 (5.1; 

case, when 1: = hi 0 and x,x = COT&, these conditions have the form 

JOA (7) = - (x cos 0 -+- ox sin 813 - (x sin 8 - DX cos BjZ < 0 (5.5) 

Fb (T) = -_X sin fl + OX ~09 e < 0 

Note that when xp+xa>O in formula (5.5), the strict inequality is satisfied by A for 
all T. The expression for A,&. in (5.3)-(5.5) are represented as functions of the para- 
meter T to allow for a comparison with respective systems without a lagging argument. 

(5.6) 

Let us investigate the conditions of existence, uniqueness, and stability of the basic 
resonance solution W=Y of system (1.3), (5.6). Equations of the type (3.4) that determine 
the constants Q‘ and b contain five parameters and have the form of cubic equations (r2=u2+h2) 

When T=O. system (5.7) is identical with the thoroughly investigated system that defines 
the Duffing equation /I/. By a simple transformation, system 15.7) can be reduced to a cubic 
equation in r2 which contains only two dimensionless parameters and is representable in the 
following form, convenient for graphical investigation: 

A = I(rA + cos @)% f sin3 @l-1 E CD (A, y, 8) (5.8) 
A = kgfo-? >, 0, y = %',cik"~f,', @ = UT 

Analysis of the set of intersection points of the ray A >O with the two-parameter sets 
of curves cb shows that for I~]<w and %~~[O,nt(madit: there are one or three roots AIfAz<AS, 
and the roots A, and A, may be the same for some values of ~,a. For example, this is true for 
~os%=+,y=T~/:~, when A,=A,=g/,. When cose=i,O>y>-%, or cos%=-l,0(y<3/,~, (5.8) has 
three different roots: Al<At<AJ. Generally the property of coincidence of the roots Az=A, 
is determined by the relation 15.8) and the condition (DA'= 1 which lead to a quadratic equa- 
tion in z=yA +EOSC~. The discriminant of this equation is D = 4(i--4 sir?%). hence multiple 
roots may occur for values of 8 that satisfy the inequality sir?%<"/,. The respective values 
of y and A,,,= A are 

To derive the set of roots Af(y,%) it is convenient to solve the quadratic equation (5.8) 

for YtIYI<;= 
-q = --WCO~ % rJ= w {W - sin3 8filr, w = A-' > 0 (5.10) 

It follows from (5.10) that for any 9 a solution w exists, and ~>sin~%. The boundary r 
of the set of admissable values of w for given % is determined in the plane of the parameters 
(y,w) by the equation ZU- sin*% and (rj.lO), As a result we have 

r = +D (I - ?a)“‘, 0 < w < 1 (5.11) 

The set of curves y (w,&), 0 <@i < X/ 2 for 8, = 0.0, = arcc~~0.95, B3 = R/ 6, %,= WXE+V,, gJ = arccol 
O.k.%,= n!2 and curve r(w) are shown in Fig.1 in conformity with i5.10) and 15.11). Curves 
for ~G[JT/~.x] are obtained by reflection from the abscissa axis which completes the construc- 
tion of the set of curves required. Note that the behaviour of curves y(t0,B) for large 
w,ur>l (for small A,O<A<I), according to (5.10), is determined by the approximate formula 
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Y" --u'COS 8 -c_,lc"'. An important qualitative property of the set of CurvOS y(w,f3) is th.hatatpoints 
YE F their tangents are vertical, i.e. the derivatives aylata are infinite. The multiplicity 

of the roots At indicated above is related to the behaviour of the curves y (w,@ when sinZ8<'i,. 
The limit multiple value of m corresponding to si~P@==~i, is equal to W = 'is {curve 3 in Fig-l). 

The functions 

0% 

Y(LL',~) provide the solution of the problem 
of the existence, uniqueness of the basic resonance motion 
of system (1.3), (5.6) andenable onetoderiveit, without further 

4 calculationswithanerxor of 0(e) for cE[0,~?). if lu*isa simple 

3 root. When w* is known, the quantity ra= Joa (w*k’)-i, and the 
unknown parameters n and b are uniquely determined from the 
linear systemC5.71. It will be readily seen that conditions 
P=Q= 0, B(z) =0 and the multiplicity of the roots w*, i.e. 
@=_A,@& E i (A = m-1) axe equivalent and satisfied only when 
sir? 0 < '/,, 

The determination of stability consists of checking the 
conditions 

~3*'(y,%)+4yw~*(~+~)casB+3y*>o, &sin%>0 (5.12) 
Fig.1 

Unlike the motions of a classical Duffing oscillator (9=0) /I_/, we have in system (1.3) 
(5.6) asymptoticallystableresonance oscillations also when the second of inequalities (5.12) 
is satisfied. It should be noted that fox the roots ~~*(v,e)of both branches of curves Y(w,%) 
(5.10) the verification that the first of conditions of (5.12) is satisfied reduces to 
checking the following inequality: 

3Wj'T 2 (wJ+ - SW %)"tces% - 2 six@ 8 > 0 

This and the set of curves represented in Fig.1 shows that motions which correspond to 
roots -4% and A, for Yf% or A for y>O are asymptotically stable, when 6 is small if k)O. 
The stability of fundamental resonance oscillations when fi~ln12,x)i.s anafysed similayly; the 
case when %@[a,Zx] is the same as that considered hese. 

I. 

2. 
3. 

4. 

5. 
6. 

7. 

8. 

9. 

The author thanks S.A. Mikhailov for assistance in carrying out the calculatians. 
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